
A Relational Modeling System

A. Atamt�urk

E.L. Johnson

J. T. Linderoth

M.W.P. Savelsbergh

School of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, GA 30332-0205, U.S.A.

Abstract

We discuss an integer linear programming modeling system based on relational

database technology. In the system, all modeling related activities, such as model

formulation, model instantiation, and model and instance management, are done

using the data manipulation language SQL.

September 1996
Revised March 1998

1 Introduction

Anyone who has ever attempted to apply mathematical programming in practice knows
that it is usually not a simple and straightforward exercise. The road from a real-life
problem situation to a satisfactory solution can be quite long and full of complications.
There are many factors that contribute to this, but one of the most important is the
large amount of data that needs to be handled.

Since it is standard practice in industry to store information in databases, Mitra
et al. [MKLM95] argue that in order for mathematical programming to gain better
acceptance as a modeling tool within corporate decision studies, a uni�ed approach
which integrates a modeling language with a relational database is necessary, as it will
provide a more powerful tool for constructing models which are truly data driven. They
propose to achieve this by incorporating relational database structures into the syntax
of the algebraic modeling language MPL [Max93].

The goal of our research has been to develop an integrated modeling environment in
which data management plays an even more central role and in which all modeling activ-
ities, such as model formulation, model instantiation, model solution, model validation,
and solution analysis, are done in a common paradigm. Our e�orts have resulted in a
relational modeling system based on relational database technology. Model formulation,

1



instance generation, and solution manipulation are all done using the data manipula-
tion language SQL (Structured Query Language) [ANS, Dat87]. Many other desirable
features of modeling environments, such as model and instance management and report
writing are facilitated because they can often be done using available database tools.
Furthermore, model builder as well as end-user can work with the same system and
users can easily share models. A prototype called ARMOS (A Relational MOdeling
System) has been implemented and performs well.

Several other researchers have observed the potential of relational algebra for math-
ematical programming programming modeling. Our research was partly motivated by
the ideas presented in Johnson [Joh89]. Choobineh [Cho91] designed SQLMP. However,
Choobineh extends SQL and uses the algebraic paradigm for model conceptualization,
whereas we do not extend SQL and use the block-schematic paradigm for model concep-
tualization. The block-schematic paradigm was introduced by Baker [Bak83] and Welch
[Wel87] and forms the basis of MathPro [Mat89] and MIMI [Bak92]. The reason we use
the block-schematic paradigm is purely pragmatic; the block-schematic approach is easier
to embed in a relational modeling scheme. We are not claiming that the block-schematic
paradigm is better than the algebraic approach used in systems such as GAMS [BKM88],
AMPL [FGK93], MPL [Max93], and AIMMS [BE93]. Which of the approaches to use is
largely a matter of taste, although it is claimed that many industrial users, particularly
in those in the process industry prefer the block-schematic paradigm as it is closer to
their activity-based view of the model. Dolk [Dol88] shows how structured models (as
introduced by Geo�rion [Geo87]) can be represented and manipulated easily using SQL.
Dolk also discusses how SQL might be used to facilitate the solution of mathematical
programming models. He expects that this will require nonstandard SQL features. Our
research shows that interfacing with an optimizer can be done completely with standard
SQL.

The paper is organized as follows. In Section 2, we present our view on the character-
istics of good modeling environments. In Section 3, we give a brief introduction to SQL.
In Section 4, we introduce the basic concepts of relational modeling. In Section 5, we
show how to use these basic concepts to model the eet assignment problem. In Section
6, we illustrate how these concepts can be implemented in a standard database environ-
ment. In Section 7, we present some conclusions and directions for future research. In
the appendices, we give relational models for several well-known planning problems and
an overview of ARMOS' functionality.

2 Modeling environments

A model is an abstraction of a real-life decision situation. Therefore, its solution has to
be interpreted with care and not as the de�nitive answer to the real-life problem.

2



The process of generating a satisfactory solution to a real-life problem involves devel-
oping a model (which typically means making simplifying assumptions), generating an
instance of the model (which typically involves gathering huge amounts of data), solving
the instance (which typically involves transforming the instance data into a machine
readable form), validating the solution and the model (which involves verifying the ap-
propriateness of the simplifying assumptions), and, if the need arises, repeating these
steps. In addition, models may have to be modi�ed when changes occur in the real-life
decision situation or user needs become di�erent. This iterative process represents the
modeling life cycle in which a model evolves over time.

A computer based linear programming modeling environment has to nurture the
entire modeling life cycle, i.e., facilitate ongoing evolution of models, and has to support
the management of resources used in the modeling life cycle, such as data, models,
solvers, solutions.

Nowadays highly accurate data gathering and processing technologies are widely
available in industry. Typically, the availability of more and more accurate data leads to
the development of more detailed models, which means that data management facilities
in modeling environments are crucially important. Most of the data required for an
instance of a model will be stored in corporate databases and has to be processed before
it can be used to construct an instance of the model at hand. Probably the most widely
used and most reliable tool to handle large amounts of data is SQL.

Typically, it is necessary to solve many instances of one model with varying data.
Therefore, it is important that data and model are separated, i.e., the model should
be stated independently from any data. Consequently, a modeling environment should
support, if not enforce, the separation of model and instance.

These are only a few, though very important, features an e�ective modeling environ-
ment should have. Other desirable features include support for model documentation
and report writing, and the availability of di�erent views such as lists, schemas, �gures,
charts of the model, the instance data, and the solution. The modeling concepts we
propose are very well suited to form the basis of a modeling system that has all the
desired features.

3 Structured Query Language

The data manipulation language SQL is the most popular interface to relational databases.
In this section, we briey introduce the SQL constructs used in the design and imple-
mentation of our relational modeling system.

3



The CREATE TABLE statement is used to de�ne and create a relational data table.

CREATE TABLE table (

attribute attribute_type,

attribute attribute_type,

...

attribute attribute_type);

Examples:

CREATE TABLE production (

plant CHAR(10),

product CHAR(10),

capacity NUMBER,

cost NUMBER);

CREATE TABLE demand (

center CHAR(10),

product CHAR(10),

amount NUMBER);

A query to the database is formulated as follows:

SELECT attribute(s)

FROM table(s)

WHERE predicate(s)

GROUP BY attribute(s);

In SQL each query is evaluated as follows. First the cartesian product of the tables
in the FROM clause is computed. Then the result is �ltered by the predicate(s) of the
WHERE clause. This result is then partitioned by the attribute(s) listed in the GROUP BY

clause. The last step is the display of the results which were requested through the
SELECT clause.

Example:

SELECT plant, product, amount

FROM production, demand

WHERE production.product = demand.product

GROUP BY product;

The last SQL construct used in the design and implementation of our relational
modeling system is the view. A view is simply a particular look at the database. Although
a view is a table, it does not exist physically in the database as a table; no storage space
or data are allocated for it. The CREATE VIEW statement is used to de�ne a virtual table.

4



Example:

CREATE VIEW largecap (plant, product, capacity) AS

SELECT plant, product, capacity

FROM production

WHERE capacity > 1000;

4 Relational modeling

We will illustrate the basic concepts of relational modeling by means of an example. We
consider a production distribution problem with single sourcing requirements [MWJS78].

4.1 Problem situation

The problem is to decide how much of each product to produce at plants, how to ship to
warehouses, and tranship to demand-centers subject to the constraint that a warehouse
has to ship all of the demand for all products to any demand-center to which it ships.
In other words, each demand-center is assigned a single warehouse that must meet all of
its demand for the several products.

4.2 Instance data

The data involved in this model are production cost per product per plant, production
capacity per product per plant, shipping cost from plant to warehouse, shipping cost from
warehouse to demand center, and demand per product per demand center. These data
are assumed to be available in a database in user data tables: Production, Shipcost,

Tranship, and Demand, which are de�ned as follows:

CREATE TABLE Production (

plant char(10),

product char(10),

capacity number,

cost number);

CREATE TABLE ShipCost (

plant char(10),

whse char(10),

cost number);

CREATE TABLE Tranship (

whse char(10),

center char(10),

cost number);

5



CREATE TABLE Demand (

center char(10),

product char(10),

amount number);

An instance of the production-distribution problem is given by the following user
data tables. This instance will be used throughout our discussion of the basic concepts
of our approach.

Table Production:

PLANT PRODUCT CAPACITY COST

---------- ---------- ---------- ----------

topeka chips 200 230

topeka nachos 800 280

newyork chips 600 255

Table Shipcost:

PLANT WHSE COST

---------- ---------- ----------

topeka topeka 1

topeka newyork 45

newyork topeka 45

newyork newyork 2

Table Tranship:

WHSE CENTER COST

---------- ---------- ----------

topeka east 60

topeka south 30

topeka west 40

newyork east 10

newyork south 30

newyork west 80

Table Demand:

CENTER PRODUCT AMOUNT

---------- ---------- ----------

east chips 200

east nachos 50

south chips 250

south nachos 180

west chips 150

west nachos 300

All that has been done so far is to specify the data that is needed to de�ne an instance
of the problem. Note that nachos are only produced in Topeka, not in New York.

6



4.3 Column and row strips

In an integer linear program activities or decisions are modeled as variables, possibly
with integrality restrictions on some of them, and restrictions and relations among the
decisions are modeled as linear equations and inequalities in terms of the variables. Typ-
ically, variables in an integer linear program can be grouped into classes with similar
characteristics, based on what they represent in the underlying problem situation. Simi-
larly, the linear equations and inequalities, or constraints, can also be grouped into classes
with similar characteristics. These classes of variables and classes of constraints can be
used to construct a block-schematic view of the integer linear program, see for instance
Welch [Wel87]. In a block-schematic view, classes of variables are called column strips,
classes of constraints are called row strips, and their intersections, where interactions
occur, are called blocks.

There are three types of decisions (classes of variables) in our production distribution
model:

� How much to produce of each product at a plant?

� How much of each product to ship from a plant to a warehouse?

� Which warehouse to assign to each center?

Each type of decision will be represented by a class of variables in the model and
by a column strip in the block-schematic representation. Since there are three types of
decisions, there will be three column strips: Produce, Ship, and Assign.

Since each decision is related to a speci�c subset of the data, e.g., we have to determine
how much to produce for each combination of a plant and a product, we can think of
column strips as selections of data, and we can thus de�ne them using the SQL construct
of a view.

Because we ultimately have to prepare the machine readable form of the integer
linear program, which requires indices, we store an index with each variable. In the
underlying relational model there is no prede�ned order among the rows of a table, but
SQL provides a pseudo-column called RowNum, which returns a number indicating the
sequence in which a row was selected. We use the RowNum construct to de�ne the unique
indices for each row and column strip.

CREATE VIEW Produce (ix, plant, product) AS

SELECT RowNum, plant, product

FROM Production;

CREATE VIEW Ship (ix, plant, whse, product) AS

SELECT RowNum, plant, whse, product

FROM Production, Shipcost

WHERE Production.plant = Shipcost.plant;

7



CREATE VIEW Assign (ix, whse, center) AS

SELECT RowNum, whse, center

FROM Tranship;

The de�nition of Ship, for example, indicates that there will be a variable for each
combination of a plant, a warehouse, and a product and that these combinations can be
obtained from the user data tables Production and Shipcost. Based on the data tables
of the instance speci�ed above, the column strip Ship de�nes the following variables plus
associated indices.

IX PLANT WHSE PRODUCT

---- ---------- ---------- ----------

1 topeka topeka chips

2 topeka newyork chips

3 topeka topeka nachos

4 topeka newyork nachos

5 newyork topeka chips

6 newyork newyork chips

Similarly, there are three types of relations and restrictions in the model.

� Production at a plant is linked to shipping from the plant to a warehouse, i.e.,
everything that is produced should be shipped to some warehouse.

� Enforcement of the product ow balance, i.e., the total amount of a product shipped
from plants to a warehouse should equal the total amount of a product shipped to
the centers.

� Enforcement of the single sourcing requirement, i.e., each center receives all its
demand from a single warehouse.

Each class of constraints will be represented by a row strip in the block-schematic rep-
resentation. Since there are three classes of constraints, there will be three row strips:
Prodrow, Shiprow, and Centrow.

CREATE VIEW Prodrow (ix, plant, product) AS

SELECT RowNum, plant, product

FROM Production;

CREATE VIEW Shiprow (ix, whse, product) AS

SELECT RowNum, whse, product

FROM Tranship, Demand

WHERE Tranship.center = Demand.center

GROUP BY whse, product;

8



CREATE VIEW Centrow (ix, center) AS

SELECT RowNum, center

FROM Demand;

Based on the data tables of the instance speci�ed above, the row strip ShipRow de�nes
the following constraints plus associated indices.

IX WAREHOUSE PRODUCT

----- -------------------- --------------------

1 topeka chips

2 topeka nachos

3 newyork chips

4 newyork nachos

Observe that we do not specify the number of variables in a class or the number of
constraints in a class. The size of an instance is not part of the model, but determined
automatically by the number of records in the user data tables.

4.4 Blocks

So far we have de�ned the column strips and row strips of the matrix, i.e, the classes
of variables and the classes of constraints of the model. Next, we have to determine
whether a class of variables interacts with a class of constraints, i.e., whether there are
nonzero entries in the block de�ned by the associated column and row strips. This gives
the blocks with the technological coe�cients of the matrix.

CREATE VIEW Block11 (rowix, colix, coef) AS

SELECT Prodrow.ix, Produce.ix, -1

FROM Prodrow, Produce

WHERE Prodrow.product = Produce.product

AND Prodrow.plant = Produce.plant;

CREATE VIEW Block12 (rowix, colix, coef) AS

SELECT Prodrow.ix, Ship.ix, 1

FROM Prodrow, Ship

WHERE Prodrow.product = Ship.product

AND Prodrow.plant = Produce.plant;

CREATE VIEW Block22 (rowix, colix, coef) AS

SELECT Shiprow.ix, Ship.ix, -1

FROM Shiprow, Ship

WHERE Shiprow.product = Ship.product

AND Shiprow.whse = Ship.whse;

9



CREATE VIEW Block23 (rowix, colix, coef) AS

SELECT Shiprow.ix, Assign.ix, amount

FROM Shiprow, Assign, Demand

WHERE Shiprow.product = Demand.product

AND Shiprow.whse = Assign.whse

AND Assign.center = Demand.center;

CREATE VIEW Block33 (rowix, colix, coef) AS

SELECT Centrow.ix, Assign.ix, 1

FROM Centrow, Assign

WHERE Centrow.center = Assign.center;

The de�nition of Block23, for example, indicates that there will be a nonzero coef-
�cient for each product that is shipped from a warehouse to a demand center and that
the value of this coe�cient is equal to the demand at this demand center, which can be
found in the user data table Demand.

As an example, we show the intermediate table that is implicitly generated during
the construction of the virtual table Block23 just before the �nal selection of rowix,
colix, and coef is made.

WHSE PRODUCT CENTER COEF COLIX ROWIX

--------- --------- --------- -------- -------- --------

topeka chips east 200 1 1

topeka chips south 250 2 1

topeka chips west 150 3 1

topeka nachos east 50 1 2

topeka nachos south 180 2 2

topeka nachos west 300 3 2

newyork chips east 200 4 3

newyork chips south 250 5 3

newyork chips west 150 6 3

newyork nachos east 50 4 4

newyork nachos south 180 5 4

newyork nachos west 300 6 4

Observe that each block de�nes a set of triplets specifying the nonzero coe�cients of
that block, and that all triplets are speci�ed relative to that block. Therefore, to specify
the complete matrix all we have to do is impose an ordering on the column strips and
row strips and add the appropriate o�sets to the row and column indices appearing in
the triplets.

It is convenient for us to consider information pertaining purely to a class of vari-
ables, such as objective coe�cients, lower, and upper bounds, and information pertaining
purely to a class of constraints, such as lower and upper bounds, as blocks as well. Since
this type of information is typically referred to as belonging to the rim of the matrix,
we will sometimes refer to these blocks as rim blocks. Note that we specify constraints

10



using lower and upper bounds on the activity instead of using a sense and a right-hand
side.

Below are the de�nitions of the rim blocks. Since these blocks will be part of the
matrix description that will be input to an integer linear programming optimizer, we
create triplets.

CREATE VIEW ProduceObj (rowix, colix, coef) AS

SELECT null, ix, cost

FROM Produce, Production

WHERE Produce.plant = Production.plant

AND Produce.product = Production.product;

CREATE VIEW ShipObj (rowix, colix, coef) AS

SELECT null, ix, cost

FROM Ship, Shipcost

WHERE Ship.plant = Shipcost.plant

AND Ship.whse = Shipcost.whse;

CREATE VIEW AssignObj (rowix, colix, coef) AS

SELECT null, ix, SUM(amount) * cost

FROM Assign, Demand, Tranship

WHERE Assign.center = Tranship.center

AND Assign.whse = Tranship.whse

AND Assign.center = Demand.center

GROUP BY cost;

CREATE VIEW ProduceUp (rowix, colix, coef) AS

SELECT ix, null, capacity

FROM Produce, Production

WHERE Produce.product = Production.product;

CREATE VIEW ProdrowLo (rowix, colix, coef) AS

SELECT ix, null, 0

FROM Prodrow;

CREATE VIEW ProdrowUp (rowix, colix, coef) AS

SELECT ix, null, 0

FROM Prodrow;

CREATE VIEW ShiprowLo (rowix, colix, coef) AS

SELECT ix, null, 0

FROM Shiprow;

CREATE VIEW ShiprowUp (rowix, colix, coef) AS

SELECT ix, null, 0

FROM Shiprow;

11



RowLo Produce Ship Assign RowUp

Objective ProduceObj ShipObj AssignObj

ColumnLo 0 0 0

ProdRow 0 � Block11 Block12 � 0

ShipRow 0 � Block22 Block23 � 0

CentRow 1 � Block33 � 1

ColumnUp ProduceUp Inf Inf

Figure 1: Block schematic view of the production-distribution model

CREATE VIEW CentrowUp (rowix, colix, coef) AS

SELECT ix, null, 1

FROM Centrow;

CREATE VIEW CentrowLo (rowix, colix, coef) AS

SELECT ix, null, 1

FROM Centrow;

The de�nition of ProduceObj indicates that for each combination of a plant and a
product de�ned in the column strip Produce the objective coe�cient can be found in
the Production user data table in the �eld cost of the row that matches this particular
combination. The de�nition of AssignObj shows that it is also possible to have computed
objective coe�cients.

This completes the model description. A block-schematic view of the model is given
in Figure 1.

Observe that the de�nition of column strips, row strips, and blocks only depends
on the structure of the user data tables, not on the records contained in those tables.
This ensures complete separation of model and data. It also means that the same model
de�nition can handle instances with two plants, two products, two warehouses, and three
demand centers, as well as instances with hundreds of plants, thousands of products,
hundreds of warehouses, and millions of demand centers. Observe that an instance of a
model exists as a collection of views, i.e., virtual tables. This is a major di�erence from
systems in which instances are physically stored in a database.

When de�ning the column strips, row strips, and blocks of the production distribu-
tion model, we have explicitly given complete SQL statements. Using complete SQL
statements does not lead to a concise description of the model. On the contrary, the
description is fairly lengthy. However, a closer examination reveals that there is a lot of
information contained in this description that does not pertain to the model, but is a

12



result of the syntax of SQL. Therefore, when relational modeling concepts are embedded
in a relational modeling environment, a user interface needs to be developed that shields
a user from the underlying SQL syntax and reduces the e�ort to specify a model. We
o�er two suggestions for accomplishing this. First, a language and compiler, in the same
spirit as AMPL and GAMS, can be developed. The language would allow concise model
descriptions and the compiler contains the logic to create the complete SQL statements.
Secondly, a dedicated model editor, similar to structure-based editors for programming
languages, can be embedded in the environment. Such a dedicated model editor might
work by providing templates in which a user enters only information relevant to the
model.

4.5 Ordered domains

An important class of linear programming models involves multi-period production plan-
ning. Such models typically contain a class of balancing constraints that ensure a proper
transition from one period to the next, e.g., for every period except the �rst, the inven-
tory at the start of period t � 1 plus the production in period t � 1 minus the sales in
period t�1 has to equal the inventory at the start of period t. Such models pose a serious
problem for the relational modeling approach because it relies on a natural ordering of
the data, such as weeks, months, and years.

The relational model that forms the basis of relational database implementations
does not support the concept of ordered domains. There are two ways to deal with
this dilemma. First, commercial implementations of a relational database have special
functions related to time and we could make use of these. Second, when building a model,
we can use numerical representations of the ordered domains and use SQL constructs to
implement ordering concepts such as `�rst', `successor', and `predecessor'.

As an example consider the following two user data tables. The �rst table is not
necessary, but mainly serves as a table that can be used in the report generation phase.

Table Date:

NAME PERIOD

-------- --------

February 2

April 4

June 6

Table Production:

PRODUCT PERIOD CAPACITY COST

-------- -------- -------- --------

chips 2 2000 76

chips 4 1600 78

13



chips 6 2000 76

nachos 2 1200 82

nachos 4 1200 82

nachos 6 800 86

Consider the class of balancing constraints mentioned above. The column strip as-
sociated with the inventory variables can be de�ned as

CREATE VIEW Inventory (ix, product, period) AS

SELECT RowNum, product, period

FROM production;

We require a balance constraint for each product in each period except for the �rst.
The row strip associated with the balancing constraints can be de�ned as

CREATE VIEW Balance (ix, product, period) AS

SELECT RowNum, product, period

FROM production

WHERE period > (SELECT min(period) FROM production);

We have used a subquery to determine the �rst period appearing in the table produc-
tion. For this class of constraints, there are two interactions between the column strip
and the row strip { there is product ow \into" the period and \out" of the period. To
accomplish this, we simply de�ne the two matrix blocks

CREATE VIEW Block_1 (rowix, colix, coef) AS

SELECT Balance.ix, Inventory.ix, -1

FROM Balance, Inventory

WHERE Balance.product = Inventory.product

AND Balance.period = Inventory.period;

CREATE VIEW Block_2 (rowix, colix, coef) AS

SELECT Balance.ix, Inventory.ix, 1

FROM Balance, Inventory

WHERE Balance.product = Inventory.product

AND Inventory.period =

(SELECT max(period) FROM Inventory WHERE period < Balance.period);

Again, we have used a subquery, this time to determine the previous period appearing
in the production table.

This concludes our description of the basic concepts of relational modeling. In Ap-
pendix A, we provide examples of relational models for some well-known planning prob-
lems.

14



5 The Fleet Assignment Problem

To provide the reader with a real-life application in which using the relational modeling
scheme is a natural and convenient choice, we discuss an important planning problem
faced by the airline companies. In the eet assignment problem, we are given a ight
schedule and a set of eet (aircraft) types. The problem is to �nd a minimum cost
assignment of the eet types to the ight legs in the schedule. The ight schedule (time
table) of a medium to large airline is huge and typically stored in a relational database.
Below we show some of the typical information found in the database.

Table Schedule:

LEG DEPSTA DEPTIM ARRSTA ARRTIM FLEET COST ...

------ -------- -------- -------- -------- -------- ------

101 DFW 745 BOS 1055 734 8270

101 DFW 745 BOS 1055 737 9198

101 DFW 745 BOS 1055 757 11088

101 DFW 745 BOS 1055 767 12098

102 BOS 1200 DFW 1500 734 8270

102 BOS 1200 DFW 1500 737 9198

102 BOS 1200 DFW 1500 757 11088

102 BOS 1200 DFW 1500 767 12098

201 DFW 745 SFO 1145 734 9653

201 DFW 745 SFO 1145 737 10731

201 DFW 745 SFO 1145 757 12936

201 DFW 745 SFO 1145 767 14036

202 SFO 1245 DFW 1615 734 10140

202 SFO 1245 DFW 1615 737 10731

202 SFO 1245 DFW 1615 757 12936

202 SFO 1245 DFW 1615 767 14036

401 DFW 1700 BOS 2000 737 9198

401 DFW 1700 BOS 2000 757 11088

401 DFW 1700 BOS 2000 767 12098

402 BOS 2130 SFO 230 737 17520

402 BOS 2130 SFO 230 757 21120

402 BOS 2130 SFO 230 767 23830

403 SFO 245 DFW 615 737 10731

403 SFO 245 DFW 615 757 12936

403 SFO 245 DFW 615 767 14036

...

In this particular example, we see that there is ight from Dallas/Fort Worth Interna-
tional Airport to Logan Airport in Boston departing at 7.45am and arriving at 10.55am
and that this ight can be own by either a Boeing 734 at a cost of 8270, a Boeing 737
at a cost of 9198, a Boeing 757 at a cost of 11088, and a Boeing 767 at a cost of 12098.

The information on available eet types is also stored in a relational database and
looks somewhat like this

15



Table Fleet:

FLEET AVAIL ...

------ ------

734 6 ...

737 6 ...

757 2 ...

767 9 ...

...

A feasible eet assignment must assign a eet type to each ight leg, cannot use
more aircrafts of a given eet type than are available, and must ensure that aircrafts
that arrive at a station either depart or stay on the ground and similarly that aircrafts
depart from a station where they landed earlier.

To model the eet assignment problem, we introduce two classes of variables. First,
a class of binary variables indicating for each combination of ight leg and eet type
whether or not the eet type is assigned to the ight leg. Second, a class of integer
variables counting the number of aircrafts of a speci�c eet type on the ground at a
particular station and time.

CREATE VIEW Assign (ix, leg, fleet) AS

SELECT RowNum, leg, fleet

FROM Schedule;

CREATE VIEW GroundArc (ix, fleet, station, time) AS

SELECT RowNum, Fleets.fleet, arrsta, arrtime

FROM Fleets, Schedule

UNION

SELECT RowNum, Fleets.fleet, depsta, deptime

FROM Fleets, Schedule;

Note that we create a so-called ground arc for each eet type at each station and
each event (arrival or departure) at that station. Ground arcs, as the name suggests are
used to model aircrafts that stay on the ground at a station.

There are three classes of constraints. First, which is at the heart of the problem, we
have ensure that each ight leg is assigned exactly one eet type.

CREATE VIEW Cover (ix, leg) AS

SELECT RowNum, leg

FROM Schedule

GROUP BY leg;

Second, we have to ensure that the eet assignments are consistent, in the sense that
there is ow balance for each eet type at each station and each event occuring at that
station. That is to say that for each eet type, the number of aircrafts of that eet type

16



\arriving" at a station (either via an incoming ight leg or via a ground arc) is equal to
the number of aircrafts \departing" from the station (either via an outgoing ight leg or
a ground arc).

CREATE VIEW Balance (ix, fleet, station, time) AS

SELECT ALL

FROM GroundArc;

Finally, we have to ensure for each eet type that we do not use more aircrafts than
there are available.

CREATE VIEW AircraftCount (ix, fleet) AS

SELECT RowNum, fleet

FROM Fleets;

Now we de�ne the blocks of the matrix. Since we have to assign exactly one eet
type to each ight leg we have the following block

CREATE VIEW CoverBlock (rowix, colix, coef) AS

SELECT Cover.ix, Assign.ix, 1

FROM Cover, Assign

WHERE Cover.leg = Assign.leg;

Next, we consider the blocks that de�ne the ow balance constraints for each eet
type at each event occuring at a station. This involves selecting appropriate incoming
and outgoing arcs.

First, we create a block handling the outgoing ight legs.

CREATE VIEW BalanceAssignDep (rowix, colix, coef) AS

SELECT Balance.ix, Assign.ix, 1

FROM Balance, Assign

WHERE Assign.leg = SELECT leg FROM Schedule

WHERE Balance.fleet = Schedule.fleet

AND Balance.station = Schedule.depsta

AND Balance.time = Schedule.deptime;

Next, we create a block handling the incoming ight legs.

CREATE VIEW BalanceAssignArr (rowix, colix, coef) AS

SELECT Balance.ix, Assign.ix, -1

FROM Balance, Assign

WHERE Assign.leg = SELECT leg FROM Schedule

WHERE Balance.fleet = Schedule.fleet

AND Balance.station = Schedule.arrsta

AND Balance.time = Schedule.arrtime;

17



Now, we switch to ground arcs and start with outgoing ground arcs.

CREATE VIEW BalanceGroundOut (rowix, colix, coef) AS

SELECT Balance.ix, Ground.ix, 1

FROM Balance, Ground

WHERE Balance.fleet = Ground.fleet

AND Balance.station = Ground.station

AND Balance.time = Ground.time;

We follow with the incoming ground arcs. Selecting the incoming arcs is a bit more
involved, since it requires the identi�cation of the previous event at a station, which is
done by means of a subquery. Furthermore, we need to distinguish the �rst event at a
station from the other events, since the previous event of the �rst event actually occurs
as the last event occuring (of the previous day).

CREATE VIEW BalanceGroundIn (rowix, colix, coef) AS

SELECT Balance.ix, Ground.ix, -1

FROM Balance, Ground

WHERE Balance.fleet = Ground.fleet

AND Balance.station = Ground.station

AND Ground.time =

SELECT max(Ground.time) FROM Ground

WHERE Balance.fleet = Ground.fleet

AND Balance.station = Ground.station

AND Ground.time < Balance.time;

CREATE VIEW BalanceGroundInFirst (rowix, colix, coef) AS

SELECT Balance.ix, Ground.ix, -1

FROM Balance, Ground

WHERE Balance.fleet = Ground.fleet

AND Balance.station = Ground.station

AND (Balance.time =

SELECT min(Balance.time) FROM Balance

WHERE Balance.fleet = Ground.fleet

AND Balance.station = Ground.station)

AND Ground.time =

SELECT max(Ground.time) FROM Ground

WHERE Balance.fleet = Ground.fleet

AND Balance.station = Ground.station;

To ensure for each eet type that we do not use more aircrafts than there are available,
we take a snapshot at midnight and count all the aircrafts of a speci�c eet type. Since
the balancing constraints ensure that the ow is a circulation the number of aircrafts
in use will be the same throughout the day and taking a snapshot at midnight su�ces.
There are two blocks: one to account for the `red eye' ights, i.e., ight legs corresponding
to ights that are in the air at midnight, and one for the ground arcs that cross midnight.

18



CREATE VIEW RedEyeCount (rowix, colix, coef) AS

SELECT PCount.ix, Assign.ix, 1

FROM PCount, Assign

WHERE PCount.fleet = Assign.fleet

AND Assign.leg = SELECT leg FROM Schedule

WHERE Schedule.arrtime < Schedule.deptime;

CREATE VIEW GroundCount (rowix, colix, coef) AS

SELECT PCount.ix, Ground.ix, 1

FROM PCount, Ground

WHERE PCount.fleet = Ground.fleet

AND (Ground.station, Ground.time) IN

SELECT station, MAX(time) FROM Ground

GROUP BY station;

Specifying the rim blocks, i.e., objective function coe�cients and lower and upper
bounds on variables and constraints is even easier.

The above example demonstrates the ease with which it possible, in this particular
case, to set up the eet assignment model. Note also that nothing needs to be done to
connect the model to the data and that no special data �les need to be prepared. This
is a major advantage of the proposed scheme over other modeling approaches, where
it is always necessary to either prepare the data in a speci�c format or to somehow
specify how the model can connect and extract the data from an external database.
Furthermore, whenever the schedule or eet databases are updated during the year the
model can be resolved automatically. Nothing needs to be changed or done.

6 A Relational Modeling System

The preceding sections have shown the conceptual viability of modeling linear and integer
programs using a relational scheme. In this section, we describe the design of a modeling
system that supports the relational modeling paradigm.

6.1 Model Management

In the block schematic approach, a mathematical programming model is speci�ed en-
tirely in terms of row strips, column strips, and matrix blocks. In a relational database
environment we can conveniently manage this information for many models. We create
four \system" tables: SysModels, SysRows, SysCols, and SysBlocks that contain all
the information about the views de�ning the various models.

The SysModels table contains the names of the models present in the system. It has
attributes Model and ObjSense. The Model attribute is the unique name of a model
and the ObjSense attribute is MAX or MIN indicating whether the speci�ed model is a
maximization or minimization problem.

19



The SysRows table contains the names of the row strips present in the system. It has
attributes Model and RowStrip. The Model attribute is the unique name of a model and
the RowStrip attribute is the unique name of a view de�ning a row strip of the speci�ed
model.

The SysCols table contains the names of the column strips present in the system. It
has attributes Model, RowStrip, and Type. The Model attribute is the unique name of
a model, the ColStrip attribute is the unique name of a view de�ning a column strip of
the speci�ed model, and the Type attribute is CONTINUOUS, BINARY, or INTEGER
indicating the variable type associated with the speci�ed column strip.

The SysBlocks table contains the names of the blocks present in the system. It
has attributes Model, Block, RowStrip, ColStrip, and Type. The Model attribute is
the unique name of a model, the Block attribute is the unique name of a matrix block
of the speci�ed model, the RowStrip attribute is the unique name of the view de�ning
the row strip associated with the speci�ed block, the ColStrip attribute is the unique
name of the view de�ning the column strip associated with the speci�ed block, and the
Type attribute is ROWLOWER, ROWUPPER, COLOBJ, COLLOWER, COLUPPER,
or BLOCKDATA indicating the type of the speci�ed block.

The tables below show the relevant entries in the system tables pertaining to the
production distribution model presented in the preceding sections.

Table SysModels:

Model ObjSense

---------- ----------

Prod-Dist MIN

... ...

Table SysRows:

Model RowStrip

---------- ----------

Prod-Dist Prodrow

Prod-Dist Shiprow

Prod-Dist Centrow

... ...

Table SysCols:

Model RowStrip Type

---------- ---------- ----------

Prod-Dist Produce CONTINUOUS

Prod-Dist Ship CONTINUOUS

Prod-Dist Assign BINARY

... ... ...

20



Table SysBlocks:

Model Block RowStrip ColStrip Type

---------- ---------- ---------- ---------- ----------

Prod-Dist Block11 Prodrow Produce BLOCKDATA

Prod-Dist Block12 Prodrow Ship BLOCKDATA

Prod-Dist Block22 Shiprow Ship BLOCKDATA

Prod-Dist Block23 Shiprow Assign BLOCKDATA

Prod-Dist Block33 Centrow Assign BLOCKDATA

Prod-Dist ProduceObj Produce COLOBJ

Prod-Dist ShipObj Ship COLOBJ

Prod-Dist AssignObj Assign COLOBJ

Prod-Dist ProduceUp Produce COLUPPER

Prod-Dist ProdrowUp Prodrow ROWUPPER

Prod-Dist ProdrowLo Prodrow ROWLOWER

Prod-Dist ShiprowUp Shiprow ROWUPPER

Prod-Dist ShiprowLo Shiprow ROWLOWER

Prod-Dist CentrowUp Centrow ROWUPPER

Prod-Dist CentrowLo Centrow ROWLOWER

... ... ... ... ...

6.2 Instance Management

In the production distribution problem used to illustrate the relational modeling scheme,
we have used speci�c data tables in the de�nition of the model, e.g., Production, Ship-
Cost, Tranship, and Demand, even though we only used the structure of these tables.
It is good practice, however, to de�ne models completely independent of its instances.
To do so, we make use of another feature of SQL called a synonym. A synonym is an
alias assigned to a table or view that may thereafter be used to refer to it. For each data
table required in the de�nition of a model, we introduce a synonym and all references
to data tables are made through these synonyms. Then, to create a speci�c instance of
a model, all that needs to be done is to update the synonyms so that they refer to the
actual data tables de�ning the instance.

The relational database environment is well suited to manage many instances of the
same model. We create two system tables: SysDataTables and SysInstances.

The SysDataTables table contains the names of the active user data tables for a
model. It has attributes Model, BaseTable, Syn, and ActiveTable. The Model attribute
is the unique name of a model, the Block attribute is the unique name of a matrix block
of the The Model attribute is the unique name of a model, the BaseTable attribute is
the unique name of a special data table, called base table, having the same structure as
an instance data table required in the de�nition of the speci�ed model, the Syn attribute
is the synonym for the base table used in the model de�nition, and the ActiveTable

attribute is the name of the current data table associated with the speci�ed synonym.

21



As mentioned before, the de�nition of a model depends only on the structure of the
user data tables, not on the records contained in those tables. Therefore, to completely
separate model and data, we use arti�cial tables in the model de�nition. The arti�cial
tables, which we call base tables, have the same structure as the user data tables, but
will always be empty. The use of base tables also gives the system a level of error-
checking. When we attempt to associate a synonym with a user speci�ed instance data
table, we can check if this table has the proper structure by comparing it to the base
table associated with the synonym.

Now back to our production distribution example. Instead of using the tables
Production, ShipCost, Tranship, and Demand directly in the de�nition of the model,
we create (empty) base tables base Production, base ShipCost, base Tranship, and
base Demand (with the same structure) and synonyms syn Production, syn ShipCost,
syn Tranship, and syn Demand (initially pointing to the base tables), and use the syn-
onyms in the de�nition of the model. Then to instantiate the model, we let the synonyms
point to the real data tables.

Table SysDataTables:

Model BaseTable Syn CurData

---------- --------------- -------------- ----------

Prod-Dist base_Production syn_Production Production

Prod-Dist base_ShipCost syn_ShipCost ShipCost

Prod-Dist base_Tranship syn_Tranship Tranship

Prod-Dist base_Demand syn_Demand Demand

The SysInstances table contains the names of the (user data) tables of an instance.
It has attributes Model, Instance, Syn, and DataTable. The Model attribute is the
unique name of a model, the Instance attribute is a unique name of an instance of the
speci�ed model, the Syn attribute is the name of a synonym used in the de�nition of the
speci�ed model, and the DataTable attribute is the name of the data table associated
with the speci�ed synonym in the speci�ed instance.

Table SysInstances:

Model Instance Syn CurData

---------- --------------- -------------- -------------

Prod-Dist PD_January syn_Production Jan_Production

Prod-Dist PD_January syn_ShipCost ShipCost

Prod-Dist PD_January syn_Tranship Tranship

Prod-Dist PD_January syn_Demand Jan_Demand

Prod-Dist PD_February syn_Production Feb_Production

Prod-Dist PD_February syn_ShipCost ShipCost

Prod-Dist PD_February syn_Tranship Tranship

Prod-Dist PD_February syn_Demand Feb_Demand

... ... ... ...

22



Finally, there are two system tables that contain solution information: SysRuns and
SysSols.

The SysRuns table has attributes Model, Instance, Solver, RunDate, RunTime, Obj,
and CpuTime. The Model attribute is the unique name of a model, the Instance attribute
is a unique name of an instance of the speci�ed model, theSolver attribute indicates
the solver used for the run, the RunDate attribute is the system date of a particular run
of the speci�ed model for the speci�ed instance, the RunTime attribute is the system
time of the run in format `hh:mm:ss', the Obj attribute is the objective function value
obtained in the run, the CpuTime attribute is the CPU for the run.

Table SysRuns:

MODEL INSTANCE SOLVER RUNDATE RUNTIME OBJ CPUTIME

---------- ---------- ------ ------- -------- ------- --------

Prod-Dist PD_January OSL 1/1/98 13:14:15 324130 00:02:14

... ... ... ... ... ... ...

The SysSols table has attributes Model, Instance, RunDate, RunTime, StripName,
and TableName. The Model The Model attribute is the unique name of a model, the
Instance attribute is a unique name of an instance of the speci�ed model, the RunDate
attribute is the system date of a particular run of the speci�ed model for the speci�ed
instance, the RunTime attribute is the system time of the run in format `hh:mm:ss', the
StripName attribute is a row or a column strip name of the speci�ed model, and the
TableName attribute is the name of the data table containing the solution information
for the speci�ed row or column strip obtained in the run.

Table SysSols:

MODEL INSTANCE RUNDATE RUNTIME STRIPNAME TABLENAME

--------- ----------- -------- -------- --------- ---------

Prod-Dist PD_January 1/1/98 13:14:15 Ship sol_Ship

... ... ... ... ... ...

Table sol Ship:

PLANT WHSE PRODUCT VALUE

---------- ---------- ---------- ----------

topeka topeka chips 200

topeka newyork chips 0

topeka topeka nachos 480

topeka newyork nachos 50

newyork topeka chips 200

newyork newyork chips 200

23



Observe that the solution is put in a collection of tables. It is also possible, and in
fact very easy, to put the solution immediately into the appropriate user data tables.
We have chosen for the above design because it is more exible and puts control in the
hands of the user.

When the values of the decision variables have been returned to the user data tables,
SQL provides a convenient tool for viewing the results of the optimization. In particular,
one can easily scan subsets of the solution which may be of interest. For example, the
production facility manager in Topeka can easily determine his production requirements
and the total production cost by the following two queries (where we assume that the
levels of production determined by the optimizer, i.e., the values of Produce, have been
put in an additional �eld amount in the data table Production).

SELECT product, amount

FROM production

WHERE plant = 'topeka';

SELECT SUM(cost*amount)

FROM production

WHERE plant = 'topeka';

6.3 Solver management

Another feature of the relational modeling environment that is easily incorporated is
to allow users to vary solver parameters, by de�ning a table SysParams to hold these
parameters.

The SysParams table has attributes Solver, Parameter, and Value. The Solver

attribute is the name of a solver, the Parameter attribute is the name of a parameter
that can be set for the speci�ed solver, and Value is the current value of the parameter.

Table SysParams:

Solver Parameter Value

------ ----------------- -------

CPLEX CPX_PARAM_CLIQUES 1

CPLEX CPX_PARAM_NODELIM 1000000

OSL rtolpinf 0.00001

... ... ...

The system tables introduced above form the basis of the prototype relational mod-
eling system ARMOS described in the next section. It should be noted that the system
tables are created only once at the installation of the system and then used by the sys-
tem as an internal database of existing models, instances, and solutions. Maintaining
the system tables is a responsibility of the system, not of the user of the system.

24



6.4 ARMOS

We have developed a small prototype system called ARMOS that implements the ideas
described in the previous sections. ARMOS o�ers a simple user interface that is coded
in Embedded SQL [Ora92] and that allows a user to list the models stored in system, to
load a model, to list the instances stored in the system for the loaded model, to make
an instance active, to optimize the active instance, and to display solution values. The
user can also display the model's matrix block structure, and view the coe�cients of any
particular matrix block of an active instance. Currently, both linear and mixed integer
linear programs can be solved. ARMOS is built on top of the commercial software
package OSL [DSV]. A brief description of its functionality can be found in Appendix B;
a detailed description of the ARMOS user interface can be found in the manual Using
ARMOS, A Relational MOdeling System [AJLS96].

As mentioned above, ARMOS is a prototype. It provides only the most basic
functions and it only has a simple text-based user interface. There is no dedicated
graphical editor supporting model development. Our goal in developingARMOS was to
verify the viability of using the relational modeling scheme in an actual implementation.

7 Discussion

This paper is primarily a `proof of concept' demonstration { it attempts to show that
it is possible to develop a modeling environment for mathematical programming using a
single paradigm: relational database technology.

We feel there are several advantages to such an approach. It is often observed, see for
example H�urliman [H�ur91], that despite recent developments mathematical programming
is still not fully exploited in practice. By using the widely available and well-known data
manipulation language SQL for model de�nition as well as data de�nition, modelers do
not need to learn a new language and can keep on using many of the available SQL tools
for report writing and what-if type analysis. Furthermore, it is easy to set things up
in such a way that using a model has a `�ll-in-the-blank' feel, where solution values are
immediately imported into the appropriate data tables. This will be very appealing to
end-users, and will increase their acceptance level. (We have all witnessed the acceptance
of spread-sheet like interfaces!) It has also been observed, see for example Mitra et al.
[MKLM95], that the data in corporate information systems are often regularly revised
and that it is therefore desirable that a decision making system should automatically
update an instance when such changes are made. In a relational modeling system, where
models and instances reside in the same corporate data base, this feature is naturally
available.

Finally, a few words on how the proposed relational modeling system compares to
other systems based on the block-schematic model building paradigm, such as MIMI

25



[Bak92] MathPro and [Mat89]. Obviously, both MIMI and MathPro are, at the moment,
far easier to use than our prototype system due to their more sophisticated graphical
user interfaces. MIMI also has a much larger functionality, since it includes an expert
system component for rule-based model solution. On the other hand, MIMI supports
only two-dimensional tables and therefore requires a hierarchy of table to represent high
dimensional strips or blocks. ARMOS does impose this restriction, since SQL easily
handles tables with multiple �elds. Furthermore, MIMI requires all relevant data to be
in its own private internal database, which requires copying/transfering data from the
corporate database to MIMI's database. ARMOS is installed on top of the corporate
database it eliminates the data transfers and storage duplication.

We see, as the main advantage of our approach, the fact that the careful design allows
for easy implementation, easy maintainability, and easy extendability. For example,
the code to generate and pass an instance of a model to a solver is only a couple of
lines of embedded SQL code. Model management, instance management, and solver
management were very easy to add, when the core system was in place.

References

[AJLS96] Alper Atamturk, Ellis Johnson, Je� Linderoth, and Martin Savelsbergh.
Using ARMOS, a Relational MOdeling System. 1996.

[ANS] ANSI. Database Language SQL, Document ANSI X3.135-1986. Also avali-
able as ISO document ISO/TC97/SC21/WG3 N117.

[Bak83] T. E. Baker. RESULT: An interactive modeling systems for planning and
scheduling, 1983. Presented at the ORSA/TIMS meeting, Chicago, IL.

[Bak92] T. Baker. MIMI/LP User Manual. Chesapeake Decision Science, Inc., 1992.

[BE93] J. Bisschop and R. Entriken. AIMMS The Modeling System. Paragon Deci-
sion Technology, 1993.

[BKM88] A. Brooke, D. Kendrick, and A. Meeraus. GAMS, A User's Guide. The
Scienti�c Press, Redwood City, CA, 1988.

[Cho91] Joobin Choobineh. SQLMP: A data sublanguage for representation and
formulation of linear mathematical models. ORSA Journal on Computing,
3(4):358{375, 1991.

[Dat87] C. Date. A Guide to the SQL Standard. Addison/Wesley, Reading, MA,
1987.

26



[Dol88] Daniel R. Dolk. Model management and structured modeling: The role of
an information resource dictionary system. Communications of the ACM,
31(6):704{718, 1988.

[DSV] Julie Druckerman, David Silverman, and Kathy Viaropulos. Optimization

Subroutine Library Release 2 Guide and Reference. IBM.

[FGK93] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL. A Modeling

Language for Mathematical Programming. The Scienti�c Press, 1993.

[Geo87] A. M. Geo�rion. An introduction to structured modeling. Management
Science, 33(5):547{588, 1987.

[GM92] Harvey J. Greenburg and Frederic H. Murphy. A comparison of mathe-
matical programming modeling systems. Annals of Operations Research,
38:177{238, 1992.

[H�ur91] T. H�urlimann. Linear modeling tools. Working Paper 187, Institute for
Automation and Operations Research, University of Fribourg, Switzerland,
1991.

[Joh89] Ellis L. Johnson. Modeling and strong linear programs for mixed integer
programming. In S. W. Wallace, editor, Algorithms and Model Formulations
in Mathematical Programming, pages 1{43. Springer-Verlag, Berlin, 1989.
NATO ASI Series, Vol. F51.

[Mat89] MathPro, Inc. MathPro Usage Guide: Introdcution and reference, 1989.

[Max93] Maximal Software. MPL Modeling System, 1993.

[MKLM95] G. Mitra, B. Kristjansson, C. Lucas, and S. Moody. Sets and indices in linear
programming modelling and their integration with relational data models.
Computational Optimization and Applications, 4:263{292, 1995.

[MWJS78] T. G. Mairs, G. W. Wake�eld, E. L. Johnson, and K. Speilbergh. On a pro-
duction allocation and distribution problem. Management Science, 24:1622{
1630, 1978.

[Ora92] Oracle Corporation. Programmer's Guide to the ORACLE Precompilers,
December 1992. Version 1.5.

[Wag75] H. Wagner. Principles of Operations Research. Prentice-Hall, Englewood
Cli�s, NJ, 1975.

27



[Wel87] J. S. Welch. PAM { A practicioners' approach to modeling. Management

Science, 33(5):610{625, 1987.

28



Appendix A

In this appendix, we give relational models for some well-known planning problems.

The Production and Distribution Model

Here we show how the SQL commands necessary to load the production and distribution
model used as working example in the preceding sections into ARMOS. The data tables
describing an instance of the model are just as described in the paper.

create table base_pd_production(

plant char(10),

product char(10),

capacity number,

cost number

);

create table base_pd_shipcost(

plant char(10),

whse char(10),

cost number

);

create table base_pd_tranship(

whse char(10),

center char(10),

cost number

);

create table base_pd_demand(

center char(10),

product char(10),

amount number

);

create synonym syn_pd_production for base_pd_production;

create synonym syn_pd_shipcost for base_pd_shipcost;

create synonym syn_pd_tranship for base_pd_tranship;

create synonym syn_pd_demand for base_pd_demand;

insert into sysmodels values ('pd', 'min');

insert into sysdata values ('pd', 'base_pd_production', 'syn_pd_production', null);

insert into sysdata values ('pd', 'base_pd_shipcost', 'syn_pd_shipcost', null);

insert into sysdata values ('pd', 'base_pd_tranship', 'syn_pd_tranship', null);

insert into sysdata values ('pd', 'base_pd_demand', 'syn_pd_demand', null);

insert into sysrows values('pd', 'pd_prodrow');

29



insert into sysrows values('pd', 'pd_shiprow');

insert into sysrows values('pd', 'pd_centrow');

insert into syscols values('pd', 'pd_produce', 'continuous');

insert into syscols values('pd', 'pd_ship', 'continuous');

insert into syscols values('pd', 'pd_assign', 'continuous');

insert into sysblocks values('pd', 'pd_produce_ub', null, 'pd_produce', null, 'colupper');

insert into sysblocks values('pd', 'pd_prodrow_lb', 'pd_prodrow', null, null, 'rowlower');

insert into sysblocks values('pd', 'pd_prodrow_ub', 'pd_prodrow', null, null, 'rowupper');

insert into sysblocks values('pd', 'pd_shiprow_lb', 'pd_shiprow', null, null, 'rowlower');

insert into sysblocks values('pd', 'pd_shiprow_ub', 'pd_shiprow', null, null, 'rowupper');

insert into sysblocks values('pd', 'pd_centrow_lb', 'pd_centrow', null, null, 'rowlower');

insert into sysblocks values('pd', 'pd_centrow_ub', 'pd_centrow', null, null, 'rowupper');

insert into sysblocks values('pd', 'pd_produce_obj', null, 'pd_produce', null, 'colobj');

insert into sysblocks values('pd', 'pd_ship_obj', null, 'pd_ship', null, 'colobj');

insert into sysblocks values('pd', 'pd_assign_obj', null, 'pd_assign', null, 'colobj');

insert into sysblocks values('pd', 'pd_block11', 'pd_prodrow', 'pd_produce', null,

'blockdata');

insert into sysblocks values('pd', 'pd_block12', 'pd_prodrow', 'pd_ship', null, 'blockdata');

insert into sysblocks values('pd', 'pd_block22', 'pd_shiprow', 'pd_ship', null, 'blockdata');

insert into sysblocks values('pd', 'pd_block23', 'pd_shiprow', 'pd_assign', 'pd_demand',

'blockdata');

insert into sysblocks values('pd', 'pd_block33', 'pd_centrow', 'pd_assign', null, 'blockdata');

rem ############

rem COLUMN VIEWS

rem ############

create view pd_produce (ix, plant, product) as

select rownum, plant, product

from syn_pd_production;

create view pd_ship (ix, plant, whse, product) as

select rownum, syn_pd_production.plant, whse, product

from syn_pd_production, syn_pd_shipcost

where syn_pd_production.plant = syn_pd_shipcost.plant;

create view pd_assign (ix, whse, center) as

select rownum, whse, center

from syn_pd_tranship;

rem #########

rem ROW VIEWS

rem #########

create view pd_prodrow (ix, plant, product) as

select rownum, plant, product

30



from syn_pd_production;

create view tmp_pd_shiprow (whse, product) as

select whse, product

from syn_pd_tranship, syn_pd_demand

group by whse, product;

create view pd_shiprow (ix, whse, product) as

select rownum, whse, product

from tmp_pd_shiprow;

create view tmp_pd_centrow(center) as

select center from syn_pd_demand

group by center;

create view pd_centrow (ix, center) as

select rownum, center

from tmp_pd_centrow;

rem #########

rem OBJECTIVE

rem #########

create view pd_produce_obj (rowix, colix, coef) as

select null, ix, cost

from pd_produce, syn_pd_production

where pd_produce.plant = syn_pd_production.plant

and pd_produce.product = syn_pd_production.product;

create view pd_ship_obj (rowix, colix, coef) as

select null, ix, cost

from pd_ship, syn_pd_shipcost

where pd_ship.plant = syn_pd_shipcost.plant

and pd_ship.whse = syn_pd_shipcost.whse;

create view pd_assign_obj (rowix, colix, coef) as

select null, ix, sum(amount) * cost

from pd_assign, syn_pd_demand, syn_pd_tranship

where pd_assign.center = syn_pd_tranship.center

and pd_assign.whse = syn_pd_tranship.whse

and syn_pd_demand.center = pd_assign.center

group by ix, cost;

rem ######

rem BOUNDS

rem ######

create view pd_produce_ub (rowix, colix, coef) as

select null, ix, capacity

31



from pd_produce, syn_pd_production

where pd_produce.product = syn_pd_production.product;

create view pd_prodrow_lb (rowix, colix, coef) as

select ix, null, 0

from pd_prodrow;

create view pd_prodrow_ub (rowix, colix, coef) as

select ix, null, 0

from pd_prodrow;

create view pd_shiprow_lb (rowix, colix, coef) as

select ix, null, 0

from pd_shiprow;

create view pd_shiprow_ub (rowix, colix, coef) as

select ix, null, 0

from pd_shiprow;

create view pd_centrow_ub (rowix, colix, coef) as

select pd_centrow.ix, null, 1

from pd_centrow;

create view pd_centrow_lb (rowix, colix, coef) as

select pd_centrow.ix, null, 1

from pd_centrow;

rem ##################

rem MATRIX BLOCK VIEWS

rem ##################

create view pd_block11 (rowix, colix, coef) as

select pd_prodrow.ix, pd_produce.ix, -1

from pd_prodrow, pd_produce

where pd_prodrow.product = pd_produce.product

and pd_prodrow.plant = pd_produce.plant;

create view pd_block12 (rowix, colix, coef) as

select pd_prodrow.ix, pd_ship.ix, 1

from pd_prodrow, pd_ship

where pd_prodrow.product = pd_ship.product

and pd_prodrow.plant = pd_ship.plant;

create view pd_block22 (rowix, colix, coef) as

select pd_shiprow.ix, pd_ship.ix, -1

from pd_shiprow, pd_ship

where pd_shiprow.product = pd_ship.product

and pd_shiprow.whse = pd_ship.whse;

32



create view pd_block23 (rowix, colix, coef) as

select pd_shiprow.ix, pd_assign.ix, amount

from pd_shiprow, pd_assign, syn_pd_demand

where pd_shiprow.product = syn_pd_demand.product

and pd_shiprow.whse = pd_assign.whse

and pd_assign.center = syn_pd_demand.center;

create view pd_block33 (rowix, colix, coef) as

select pd_centrow.ix, pd_assign.ix, 1

from pd_centrow, pd_assign

where pd_centrow.center = pd_assign.center;

The model de�nition above illustrates the use of temporary views. A temporary
view has been used to create the rowstrip pd shiprow. We want a row in our constraint
matrix for every unique combination of a warehouse and a product. Due to the form of
our instance data tables tranship and demand, we need the SQL construct group by to
accomplish this results.

select whse, product

from tranship, demand

group by whse, product;

WHSE PRODUCT

-------------------- --------------------

new york chips

new york nachos

topeka chips

topeka nachos

However, the Rownum construct necessary to create unique indices within a row or
column strip does not work with the group by clause. Therefore, we create a temporary
view using the select statement above and them query the temporary view with the
Rownum construct to assign the unique indices to the rowstrip.

The Diet Problem

This example is the simple and famous diet problem from linear programming. The
problem is to choose certain amounts of foods to eat to minimize the total food cost, while
still meeting nutritional requirements. For further explanation, an excellent description
of this problem is in [FGK93].

create table base_diet_nutr(

vitamin char(20),

n_min number,

n_max number

33



);

create table base_diet_food(

food char(20),

f_min number,

f_max number,

cost number

);

create table base_diet_amount(

food char(20),

vitamin char(20),

amount number

);

create synonym syn_diet_nutr for base_diet_nutr;

create synonym syn_diet_food for base_diet_food;

create synonym syn_diet_amount for base_diet_amount;

insert into sysmodels values ('diet', 'min');

insert into sysdata values ('diet', 'base_diet_nutr', 'syn_diet_nutr', null);

insert into sysdata values ('diet', 'base_diet_food', 'syn_diet_food', null);

insert into sysdata values ('diet', 'base_diet_amount', 'syn_diet_amount', null);

insert into sysrows values ('diet', 'diet_req');

insert into syscols values ('diet', 'diet_buy', 'continuous');

insert into sysblocks values ('diet', 'diet_buy_obj', null, 'diet_buy', 'food', 'colobj');

insert into sysblocks values ('diet', 'diet_buy_lb', null, 'diet_buy', 'food', 'collower');

insert into sysblocks values ('diet', 'diet_buy_ub', null, 'diet_buy', 'food', 'colupper');

insert into sysblocks values ('diet', 'diet_req_lb', 'diet_req', null, 'nutr', 'rowlower');

insert into sysblocks values ('diet', 'diet_req_ub', 'diet_req', null, 'nutr', 'rowupper');

insert into sysblocks values ('diet', 'diet_buyreq_block', 'diet_req', 'diet_buy',

'amount', 'blockdata');

rem ############

rem COLUMN VIEWS

rem ############

create view diet_buy(ix, food) as

select rownum, food

from syn_diet_food;

create view diet_buy_obj(row_ix,col_ix,coef) as

select -3, ix, cost

from diet_buy, syn_diet_food

where diet_buy.food = syn_diet_food.food;

34



create view diet_buy_lb(row_ix,col_ix,coef) as

select -2, ix, f_min

from diet_buy, syn_diet_food

where diet_buy.food = syn_diet_food.food;

create view diet_buy_ub(row_ix,col_ix,coef) as

select -1, ix, f_max

from diet_buy, syn_diet_food

where diet_buy.food = syn_diet_food.food;

rem #########

rem ROW VIEWS

rem #########

create view diet_req(ix, vitamin) as

select rownum, vitamin

from syn_diet_nutr;

create view diet_req_lb(row_ix,col_ix,coef) as

select ix, -2, n_min

from diet_req, syn_diet_nutr

where diet_req.vitamin = syn_diet_nutr.vitamin;

create view diet_req_ub(row_ix,col_ix,coef) as

select ix, -1, n_max

from diet_req, syn_diet_nutr

where diet_req.vitamin = syn_diet_nutr.vitamin;

rem ##################

rem MATRIX BLOCK VIEWS

rem ##################

create view diet_buyreq_block(row_ix, col_ix, coef) as

Select diet_req.ix, diet_buy.ix, amount

from diet_req, diet_buy, syn_diet_amount

where diet_req.vitamin = syn_diet_amount.vitamin and

diet_buy.food = syn_diet_amount.food;

There is only one column strip in the model, corresponding to the decision variables
of the quantities of the di�erent foods to buy. The only constraint that these choices
of food must satisfy is to meet the daily nutritional requirements, so there is also only
one row strip in the model. The data tables describing an instance of the model are
a table describing the minimum and maximum amounts of each vitamin that must be
consumed, a table descibing a minimum and maximum amount of food a person can
buy, as well as its cost, and a table telling the amount of each vitamin in a speci�c food.

35



The Army Model

The Army model is a classic problem in military manpower planning. We use the version
presented in Wagner [Wag75] and [GM92]. Soldiers can be enlisted for any number of
periods up to a certain maximum. The decision to be made is how many soldiers to
employ of each enlistment length in each year to meet a required troop strength for
every year of a planning horizon in order to minimize troop costs, where the costs are
subject to ination.

create table base_army_demand_data(

year number,

demand number

);

create table base_army_enlist_data(

length number,

cost number

);

create table base_army_infl_data(

year number,

infl number);

create synonym syn_army_demand_data for base_army_demand_data;

create synonym syn_army_enlist_data for base_army_enlist_data;

create synonym syn_army_infl_data for base_army_infl_data;

insert into sysmodels values ('army', 'min');

insert into sysdata values ('army', 'base_army_demand_data', 'syn_army_demand_data', null);

insert into sysdata values ('army', 'base_army_enlist_data', 'syn_army_enlist_data', null);

insert into sysdata values ('army', 'base_army_infl_data', 'syn_army_infl_data', null);

insert into sysrows values ('army', 'army_demand');

insert into syscols values ('army', 'army_enlist', 'integer');

insert into sysblocks values ('army', 'army_enlist_obj', null, 'army_enlist', null, 'colobj');

insert into sysblocks values ('army', 'army_demand_lb', 'army_demand', null, null,

'rowlower');

insert into sysblocks values ('army', 'army_block11', 'army_demand', 'army_enlist', null,

'blockdata');

rem ############

rem COLUMN VIEWS

rem ############

create view army_enlist(ix, year, length) as

36



select rownum, year, length

from syn_army_infl_data, syn_army_enlist_data;

create view army_enlist_obj(row_ix, col_ix, coef) as

select -3, ix, infl*cost

from army_enlist, syn_army_enlist_data, syn_army_infl_data

where army_enlist.year = syn_army_infl_data.year

and army_enlist.length = syn_army_enlist_data.length;

rem #########

rem ROW VIEWS

rem #########

create view army_demand(ix, year) as

select rownum, year

from syn_army_demand_data;

create view army_demand_lb(row_ix, col_ix, coef) as

select ix, -2, demand

from army_demand, syn_army_demand_data

where army_demand.year = syn_army_demand_data.year;

rem ##################

rem MATRIX BLOCK VIEWS

rem ##################

create view army_block11(row_ix, col_ix, coef) as

select army_demand.ix, army_enlist.ix, 1

from army_demand, army_enlist

where army_enlist.year + army_enlist.length - 1 >= army_demand.year and

army_enlist.year <= army_demand.year;

There is only column strip and row strip for this model. There are three data tables
used to create an instance of the model. The �rst simply hold the required troop strength
in each year. The second holds the (uninated) cost per year of hiring a soldier of each
potential enlistment length. The �nal table holds the estimated ination factor for each
year in the planning horizon.

The Steel Model

This problem is the multi-period steel production model steelT2.mod described in
[FGK93]. The problem is to determine how many tons of steel to produce, send to
inventory, and sell to maximize pro�ts over many periods, while meeting constraints on
the availability of the rolling mill.

rem ###########

37



rem BASE TABLES

rem ###########

create table stl_production_def (

product char(20),

initinv char(20),

rate number,

pcost number,

hcost number);

create table stl_markets_def (

product char(20),

period date,

revenue number,

limit number);

create table stl_periods_def (

period date,

avail number);

rem ########

rem SYNONYMS

rem ########

create synonym stl_production for stl_production_def;

create synonym stl_markets for stl_markets_def;

create synonym stl_periods for stl_periods_def;

rem ####################

rem UPDATE SYSTEM TABLES

rem ####################

insert into sysmodels values('steel', 'max');

insert into sysdata values('steel', 'stl_production_def', 'stl_production', null);

insert into sysdata values('steel', 'stl_markets_def', 'stl_markets', null);

insert into sysdata values('steel', 'stl_periods_def' ,'stl_periods', null);

insert into sysrows values('steel', 'stl_Time');

insert into sysrows values('steel', 'stl_BalanceFirst');

insert into sysrows values('steel', 'stl_Balance');

insert into syscols values('steel', 'stl_Make', 'CONTINUOUS');

insert into syscols values('steel', 'stl_Inv', 'CONTINUOUS');

insert into syscols values('steel', 'stl_Sell', 'CONTINUOUS');

insert into sysblocks values('steel', 'stl_Sell_ub', null, 'stl_Sell', null, 'colupper');

insert into sysblocks values('steel', 'stl_Time_ub', 'stl_Time', null, null, 'rowupper');

insert into sysblocks values('steel', 'stl_BalanceFirst_lb', 'stl_BalanceFirst', null, null,

38



'rowlower');

insert into sysblocks values('steel', 'stl_BalanceFirst_ub', 'stl_BalanceFirst', null, null,

'rowupper');

insert into sysblocks values('steel', 'stl_Balance_ub', 'stl_Balance', null, null,

'rowupper');

insert into sysblocks values('steel', 'stl_Balance_lb', 'stl_Balance', null, null,

'rowlower');

insert into sysblocks values('steel', 'stl_Make_obj', null, 'stl_Make', null, 'colobj');

insert into sysblocks values('steel', 'stl_Inv_obj', null, 'stl_Inv', null, 'colobj');

insert into sysblocks values('steel', 'stl_Sell_obj', null, 'stl_Sell', null, 'colobj');

insert into sysblocks values('steel', 'stl_block11', 'stl_Time', 'stl_Make', null,

'blockdata');

insert into sysblocks values('steel', 'stl_block21', 'stl_BalanceFirst', 'stl_Make', null,

'blockdata');

insert into sysblocks values('steel', 'stl_block22', 'stl_BalanceFirst', 'stl_Inv', null,

'blockdata');

insert into sysblocks values('steel', 'stl_block23', 'stl_BalanceFirst', 'stl_Sell', null,

'blockdata');

insert into sysblocks values('steel', 'stl_block31', 'stl_Balance', 'stl_Make', null,

'blockdata');

insert into sysblocks values('steel', 'stl_block32a', 'stl_Balance', 'stl_Inv', null,

'blockdata');

insert into sysblocks values('steel', 'stl_block32b', 'stl_Balance', 'stl_Inv', null,

'blockdata');

insert into sysblocks values('steel', 'stl_block33', 'stl_Balance', 'stl_Sell', null,

'blockdata');

rem ############

rem COLUMN VIEWS

rem ############

create view stl_Make (ix, product, period) as

select RowNum, X.product, period

from stl_markets X, stl_production

where X.product = stl_production.product;

create view stl_Make_obj (row_ix, col_ix, coef) as

select null, ix, -pcost

from stl_Make, stl_production

where stl_Make.product = stl_production.product;

create view stl_Inv (ix, product, period) as

select RowNum, X.product, period

from stl_markets X, stl_production

where X.product = stl_production.product;

create view stl_Inv_obj (row_ix, col_ix, coef) as

39



select null, ix, -hcost

from stl_Inv, stl_production

where stl_Inv.product = stl_production.product;

create view stl_Sell (ix, product, period) as

select RowNum, product, period

from stl_markets;

create view stl_Sell_obj (row_ix, col_ix, coef) as

select null, ix, revenue

from stl_Sell, stl_markets

where stl_Sell.product = stl_markets.product and

stl_Sell.period = stl_markets.period;

create view stl_Sell_ub (row_ix, col_ix, coef) as

select null, ix, limit

from stl_Sell, stl_markets

where stl_Sell.product = stl_markets.product and

stl_Sell.period = stl_markets.period;

rem #########

rem ROW VIEWS

rem #########

create view stl_Time (ix, period) as

select RowNum, stl_periods.period

from stl_periods;

create view stl_Time_ub (row_ix, col_ix, coef) as

select ix, null, avail

from stl_Time, stl_periods

where stl_time.period = stl_periods.period;

create view stl_BalanceFirst (ix, product) as

select RowNum, product

from stl_production;

create view stl_BalanceFirst_lb (row_ix, col_ix, coef) as

select ix, null, -initinv

from stl_BalanceFirst, stl_production

where stl_BalanceFirst.product = stl_production.product;

create view stl_BalanceFirst_ub (row_ix, col_ix, coef) as

select ix, null, -initinv

from stl_BalanceFirst, stl_production

where stl_BalanceFirst.product = stl_production.product;

create view stl_Balance (ix, product, period) as

select RowNum, product, period

40



from stl_markets

where period > (select min(period) from stl_markets);

create view stl_Balance_ub (row_ix, col_ix, coef) as

select ix, null, 0

from stl_Balance, stl_markets

where stl_balance.period = stl_markets.period and

stl_Balance.product = stl_markets.product;

create view stl_Balance_lb (row_ix, col_ix, coef) as

select ix, null, 0

from stl_Balance, stl_markets

where stl_balance.period = stl_markets.period and

stl_Balance.product = stl_markets.product;

rem ##################

rem MATRIX BLOCK VIEWS

rem ##################

create view stl_block11 (row_ix, col_ix, coef) as

select stl_Time.ix, stl_Make.ix, 1/rate

from stl_Time, stl_Make, stl_production

where stl_Time.period = stl_Make.period and

stl_Make.product = stl_production.product;

create view stl_block21 (row_ix, col_ix, coef) as

select stl_BalanceFirst.ix, stl_Make.ix, 1

from stl_BalanceFirst, stl_Make

where stl_BalanceFirst.product = stl_Make.product

and stl_Make.period = (select min(period) from stl_Make);

create view stl_block22 (row_ix, col_ix, coef) as

select stl_BalanceFirst.ix, stl_Inv.ix, -1

from stl_BalanceFirst, stl_Inv

where stl_BalanceFirst.product = stl_Inv.product

and stl_Inv.period = (select min(period) from stl_Inv);

create view stl_block23 (row_ix, col_ix, coef) as

select stl_BalanceFirst.ix, stl_Sell.ix, -1

from stl_BalanceFirst, stl_Sell

where stl_BalanceFirst.product = stl_Sell.product

and stl_Sell.period = (select min(period) from stl_Sell);

create view stl_block31 (row_ix, col_ix, coef) as

select stl_Balance.ix, stl_Make.ix, 1

from stl_Balance, stl_Make

where stl_Balance.product = stl_Make.product and

stl_Balance.period = stl_Make.period;

41



create view stl_block32a (row_ix, col_ix, coef) as

select stl_Balance.ix, stl_Inv.ix, -1

from stl_Balance, stl_Inv

where stl_Balance.product = stl_Inv.product and

stl_Balance.period = stl_Inv.period;

create view stl_block32b (row_ix, col_ix, coef) as

select X.ix, stl_Inv.ix, 1

from stl_Balance X, stl_Inv

where X.product = stl_Inv.product and

stl_Inv.period = (select max(period) from stl_Inv where period < X.period);

create view stl_block33 (row_ix, col_ix, coef) as

select stl_Balance.ix, stl_Sell.ix, -1

from stl_Balance, stl_Sell

where stl_Balance.product = stl_Sell.product and

stl_Balance.period = stl_Sell.period;

There are three columns strips, corresponding to the distinct decisions of how much
steel to make, send to inventory, and sell in each time period. There are three rowstrips.
One corresponds to the mill availability constraints for each time period and the remaning
two are necessary to balance the ow of products from time period to time period.

There are three tables holding data for an instance of the model. The production

table holds for each product the initial inventory, the rate at which it can be produced,
the production cost, and the holding cost. The markets table contains the revenue
received and maximum amount that can be sold in each for each product and period.
The periods table tells how much rolling mill time is available in each period.

This example gives an idea of how to deal with ordered sets of variables within
ARMOS since we must balance the ow of steel from period to period within the
model. Here we make use of the special SQL date functions to select the minimum or
maximum period.

One other interesting feature of this model is this use of overlaid matrix blocks. Their
use is often necessary whenever there is more than one set of technological coe�cients
for a block. Balance constraints, having both a +1 and -1 entry in the block, fall into
this category.

42



Appendix B

In this appendix, we give a brief description of the commands and functionality of the
ARMOS system.

list: This command displays the names of models stored in SysModels table.

load <modelname>: Loading a model is the �rst thing a user needs to do to access a
model stored in system tables. If the model speci�ed is not in the ARMOS database, an
error message appears indicating this.

matrix: Once a model is successfully loaded, the block schematic view can be displayed
by typing matrix command. This commands prints the column strip, row strip and
block names of the model, in a schematic format. Below is the block schematic view of
the production distribution model described earlier.

RDDOMS > matrix

rowlower produce ship assign rowupper

prodrow rlower1 block11 block12 0 rupper1

shiprow rlower2 0 block22 block23 rupper2

centrow rlower3 0 0 block33 rupper3

colupper cupper1 +inf +inf

collower 0 0 0

objective obj1 obj2 obj3

set <instancename>: The system's instance management is performed by the set com-
mand. This command associates an instance name with the data tables used to cre-
ate an instance of the problem. When this command is called, the system checks the
SysInstances table to see whether there exists data table names speci�ed for the in-
stance name before. If the result is a�rmative, those data table names are copied to the
system table SysData. Otherwise, the user is asked to enter the data table names for
this new instance of the model. These names are recorded to SysInstances and then
copied to SysData immediately. After a model is loaded, the set command can be called
many times to create di�erent instances.

show <blockname(s)>: Once an instance is set, it is possible to view instance matrix for
a particular block of the model with show <blockname(s)> command. This capability
may be quite useful for analyzing the instance. Arguments to show can be a single block
name or a list of block names. A dash as an argument stands for all the model blocks.

43



solve: This command is the heart of our system. It actually performs all the interaction
with the solver. When the solve command is called, the system generates the actual
matrix (triplets) for the instance and loads it to the solver. After the solution is found,
it creates proper tables and puts back solution values associated with the column strips
and row strips into these solution tables. The solution table names for the particular
instance solved are recorded in SysSols for future reference. Several statistical informa-
tion such as run date, run time, elapsed time are recorded in SysRuns.

display <r/c> <tablename>: To display the solution values obtained by the solver,
the display command is used. The syntax of the display command is display <r/c>

<tablename>, where <tablename> is the name of the particular solution table you wish
to view, and <r/c> is \r" if the solution to be viewed is a row strip and \c" if it is a
column strip.

text <viewname>: This command is for displaying the SQL commands used to create
views for row and column strips and model blocks. This capability is particularly useful
for report generation and debugging purposes at model generation phase. Argument to
text can be a single view name or a list of view names. A dash as an argument stands
for all the views used in model.

44


